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Cone Quasi-Concave Multi-Objective Programming:
Theory and Dominance Cone Construction

by
A. Chames
Z. M. Huang
J. J. Rousseau
D. B. Sun
Q. L. Wei

Abstract

Some basic theory of "cone quasi-concave multi-objective programming” is developed. This
new class of vector extremal problems with quasi-concave multiple objectives employs ideas of non-
dominated solutions associated with dominance cones. Necessary as well as sufficient conditions for
optimal solutions to such problems are provided. A simple example illustrates the concepts involved.
in addition, for general applications in economics, it is shown how to establish dominance cones to
realize producer priorities, consumer preferences, and other concerns exogenously determined.

Keywords: Cone Quasi-concave multi-objective programming, generalized cone concavity, multi-
objective programming, nondominated solutions, vector extremal problems
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Cone Quasi-Concave Multi-Objective Programming:
Theory and Dominance Cone Constructions

by
A. Chames
ZM. Huang
J. J. Rousseau
D. B. Sun
Q. L. Wei

1. Introduction

In the multi-objective programming literature, many authors presume the concavity of objective
functions in seeking Pareto-optimal solutions. Following the basic ideaé of goal programming introduced
by Charnes and Cooper [3] , {4}, and [5] in the early fifties and developed through the sixties, Yu [22], and
Beregstresser, Chames and Yu [2] generalized Pareto-optimal solutions to nondominated solutions and
developed them in the objective space of multi-objective problems. Charnes, Cooper, Wei , and Huang
[8] studied the properties of nondominated solutions in decision spaces which were normed vector
spaces. They further developed new approaches and applied them to extensions of game theory [9].
Chames, Huang, Rousseau, and Wei [10] also initiated and developed "T-non-dominated efficiency" for
multi-payoff n-person games with interacting "cross-constrained” strategy sets as vector extremal
principles for solutions of such games.

A great deal of research effort has been expended on the theory of quasi-concave functions for
economic studies. Many utility functions and production functions are quasi-concave rather than
concave. Especially for their economic applications, Diewert, Avriel, and Zang [13] and others have
achieved important research results on the properties of general quasi-concave functions. Arrow and
Enthoven [1], Mangasarian [15), Ferland [14] and others focused on single objective quasi-concave
programming with quasi-concave objective and constraint functions. Their methods, however, do not
extend in any immediate way to multi-objective programming, since a non-negative linear combination of
quasi-concave functions is not necessarily quasi-concave. Craven [12] considered a special case of multi-
objective programming assuming that the weighted sum of the objective functions is pseudo-concave for
each suitably chosen set of weights. This approach.does not apply either, since a pseudo-concave
function must be a quasi-concave function [15]. So far as we know, with the exception of the discussion

in [10), littie has been touched upon in quasi-concave multi-objective programming, especially as related
to new ideas of solutions of games with interacting or "cross-constrained" strategy sets [10].

In the present paper we develop some basic theory of "cone quasi-concave muiti-objective
programming”, a new class of multi-criteria decision problems, which incorporates nondomi-
nated solutions associated with dominance cones. Necessary as well as sufficient conditions for
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optimal solutions to such problems are also obtained. With dominance cones appropriately
constructed, the resultant non-dominated solutions, which are actually a subset of the Pareto-
optimal solutions, should be more desirable in the sense that they are better suited to the needs,
obligations, and preferences of decision makers. A simple example illustrates the concepts
involved. In addition, we show how to establish dominance cones to realize producer priorities,
consumer preferences, and other concerns exogenously determined.

2. Generalized Cone Concavity and Nondominated Solutions
In this section we review some relevant results regarding cones, their polar cones,
generalized cone concavity and nondominated solutions for later use in our development. We

also derive some properties of generalized cone concavity.
A set S in EN is convex iff x1x2€ S implies that Ax; + (1-A)x2e § forall 0 <A <1. Asets

is a cone iff x€ S and A 20 imply that A X e S. Sis a convex cone iff S is a cone and is convex.
Thus, Sis a convex cone iff X1 x2& S and M,4220 imply that A1 X1 + A1 X2 € S,

For an arbitrary set S in EN, let X € S, where S denotes the closure of the set S. Denote
the "tangency cone"of S at X by T (S, X), where T (S, X) = {h € E™ there exists a sequence
{¥} and a sequence {\K} suchthath = ImA* (XX — %), with xk € 5,2 >0,and imy* = X}.

k— o K- eo

Further, denote the (negative) polar cone of S by S* where S* = {ye E": xty <0 for
all x €S} (the superscript "t" denotes transpose). A cone A in E" is said to be acute if there
exists an open half-space H = {x € E":a'x > 0, a =0} such that Ac H U {0}).

Cones, polyhedral cones and polar cones in E" are discussed further in Rockefellar [17],
Stoer and Witzgall [21] and Yu [22]. More general results in normed linear spaces are
derived in Charnes, Cooper, Wei and Huang [8].

Proof of the following lemma may be found in [8], [17], [21] and [22].

Lemma 2.1: Let A and A¢ be conesinEN.
() HKAcAithen A*> A4

i) IntA*=+Q ifandonlyif A isacute

(i) 1 Ais aconvex cone then (A*)* = A




__-_f

(iv) When Ais acute,

ItA* = fye E": dy<0 forall x € A,x = 0} and
AN (-A) = {0}
Definitlon 2.1: Let S be a convex set in E" and A be a convex cone in EM. A real-valued
vector function g:S —» EMis called"A - concave on S" if
g x'+(1-2)x3) - A g(x)) +(1-1) g(xd) )e A

forallx!, x2€ S andA €(0,1).

Definition 2.2: Let S be a convex set in EP and A be a convex cone inEM. A real-valued
vector function g : S » EMis called "A~quasiconcave on S" if

g x'+(1-1)x®) ~Min{g (x'), (@) }e A foralx!,x2eSand) €(0,1).
and is called "strictly A-quasiconcave on S" if
gAx1+(1-1)x3)-Min{g(x!), g(x®)} e It A forallx' = x2e SandAe (0,1),

where

min (g1 (x'), g1 (x?))

Min{g (x), g (x3)} = )
min (gm (x*), gm (x?)

From the definition above, a real-valued function g defined on a convex set S is quasi-
concave (151 iff
g (Ax1+(1-A)x2) - Min {g (x1), g(x2)} = Oforallx!: x2€ S and A €(0,1),
and is strictly quasiconcave [14] iff
g x'+(1-1) x3)-Min{g(x!), g(x®}>0 forallx!: x2e S, x'=x2 and

A€ (0,1).




(The name "pit-free” for quasi-concave and “strictly pit-free" for strictly quasi-concave has been
suggested in the past as a mnemonically better rendition of these properties.)

Lemma 2.2:[15] Let S be a convex set in E and g be a differentiable real-valued
function defined on S. g is quasi-concave on S iff for any x1. x2 € S, g (x2) >g (x1) implies that

Vg (x') (x2-x1) 20, or equivalently, for any x1-x2 €S, Vg (x) (x2x1) <0 implies that g (x2) <g (x1).

Definition 2.3: Let S be a convex set in E" and A be a convex cone in EM. A real-valued
vector function g : S —» EMis called "A (i) —strictly quasiconcave on $" if g is A —quasiconcave and
pi gi is strictly quasiconcave on S for any nonzerope —A*wherep = (P1, ... Pi-- -, Pm)!

Lemma 2.4 [19) : Let S be a convex set in E", A be aconvex coneinEM, andg:S— EMbea
real-valued vector function. If,foralla € E™, the set Sy = {x€S :g (x) € a + A} is convex, then g is

A-quasiconcave on S.

We now give our definition of the class of "vector extremal” or multi-objective programming
problems we shall consider.

Definition 2.4: The multi-objective programming problem is defined in terms of a set of
objectives L ={1,2,.. ., £} i real-valued functions f; , j € L, the objective functions; a real-vaiued

vector function g = (g1, . . ., gm), the constraint function; a convex set S, the domain of all fj and g;
a convex cone K in EM, the constraint cone; a convex cone W in Ef, the dominance cone; and

XX)=(x=(x1,...,X%n) :g(x) €K, x €S }, the constraint set. The multi-objective programming
problem is therefore formulated as

MaX (fy(X)s.... £, (X))

(W-K-P)
xe XK

Definition 2.5: Apoint Xe X (K) is called a nohdominated solution of (W-K-P) associated
with W if there does not exist any point y € X (K)such that

ot It €0 (R, .. +W

foy) # fo(X) forsomejo€ L.

The corresponding point (f1(X), . .., f; (X))t in the objective space is called a nondominated point
associated with W.




For many purposes in economics and elsewhere, what we seek are Pareto-optimal solutions to
such multi-objective programming problems. (See, Charnes, Huang, Rousseau and Semple [9] and
Charnes, Huang, Rousseau and Wei [10].) Note that if we set the dominance cone W = EX, the
nonnegative orthant, then the nondominated solutions of (W-K-P) associated with E, are precisely
the Pareto-optimal solutions. The particular subset of Pareto-optimal solutions from which a final
choice is to be effected (for example, by a regulatory agency) will depend on the preferences of the
decision-making body over the outcomes in the objective function space (i.e., the nondominated or
Pareto-optimal points). By applying ditferent dominance cones W o Ef, , the set of solutions can be
further restricted in accordance with such preferences.

To illustrate what is involved, consider the simple two-variable case where two objective func-
tions f| (x4, x2) and f2 (x1, x2) are to be maximized subject to a certain constraint set. Figure 2.1 depicts

the decision space and its mapping into the objective function space. The (nondominated) Pareto-
optimal solutions given by the sets I1, I2 and I3 are mapped into (nondominated) Pareto-optimal
points denoted by the sets J1, J2 and J3, respectively, so that

J=(f1 ). f2(l)), i=123

Pareto-optimal

X .
2 Pareto-optimal ¢ :
4 solutions 2 4 points
w -
3
> >
0 g ; f

Figure 2.1




A preference for objective f1 over objective f2 will lead the decision maker to focus on the
points of Jo and J3. Accordingly, a dominance cone Wy can be established as shown in Figure 2.2.
Associated with W4, the points of J{ are no longer nondomirated. Consider, for example, the point (f;
(X) , f2 (X) ) which lies in J1 and is Pareto-optimal. Associated with the dominance cone W1, (fi (X), f2
(X)) is dominated by the point (f; (y),f2(y)) (which is also Pareto-optimal) since (f| (y),f2(y) ) canbe
expressedas (fi (X) .2(X)) +wwherew isavectorinWy. Thus, (f (y).f2 (y)) e fj X).f2(X))
+ Wj. Associated with W1, only the points of Jo and J3 remain nondominated, and the possible
solutions are therefore restricted to those of |2 and I3. Similarly, a preference for f; over f1 will lead to
elimination of the points of J3 by using the dominance cone W3. Associated with W3, only the points
of J1 and Jp are nondominated, and the solutions are this time confined to those of I and i2. A
balance between the two objectives will focus attention on the points of Jo. This will require a
dominance cone W»> = W; U W3, in which case only the points of J2 and solutions of |5 are
nondominated.

(ty (). 1)

>
W

Figure 2.2




Note that in each case the dominance cone contains Ef,. Otherwise, some ot the nondominated
solutions would not be Pareto-optimal. This is illustrated in Figure 2.3, where J1 'V Ja is the set of
Pareto-optimal points, but Jg\W J1 \UJ2 is the set of nondominated points associated with the domi-
nance cone W which is smaller than the nonnegative orthant. In the present paper we shall focus only
on dominance cones which contain the nonnegative orthant E%,, and in Section 4 we show how

dominance cones can be constructed to achieve what is required.

Figure 2.3

3. Cone Quasiconcave Multi-objective Programming

Arrow and Enthoven [1] considered the single objective programming problem where the
objective function and constraint functions are quasiconcave. However, their method does not
extend to multi-objective quasiconcave programming since a nonnegative linear combination of
quasiconcave functions is not necessarily quasiconcave. For example, f1 (xq, x2) = x3 and
fa(x1,x) = x3 are both quasiconcave, but f1(xq, x2) +fa(x1,x2) = x3 , x3 is not quasi-concave.
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e

Craven [12] considered a special case of multi-objective programming in which he assumed that
Y. pjf; is pseudoconcave foreachp = (py, ..., Pr)t € — W*. This approach is not suitable either,
je L
since pseudoconcave functions must be quasiconcave [15] and sums of quasiconcave functions
need not be quasiconcave.

We first provide (in Theorem 3.1) sufficient conditions for a solution to the problem

Max Y, fj(x)
jeL

xe X, where X C E" is a convex set. This is accomplished by partitioning L = {1.2,...,4 into k

K

SUDQOUPS Ty i = 1.,k (ie. Ti M Tj= B,ixjand _ Ti= L), suchthat Y, 1 is quasiconcave
jeT

foreach i=1,...,k

We then develop several theorems for solutions to cone quasi-concave multi-objective pro-
gramming problems, a new class of muiticriteria decision problems, which incorporates non-dominated
solutions associated with dominance cones. Necessary conditions for solutions to such problems are
given in Theorems 3.2 and 3.4, while sufficient conditions are given in Theorems 3.5, 3.6 (based on
Theorem 3.1), 3.7, 3.8, and 3.9.

Theorem 3.1: Let D and X be convex sets with D © X and {fj(x)} j L be differentiable on an
open set containing D. Let {Tj:i=1,...,k } be a partition of L such that for each i,

Z fi (x) is quasi-concave on D. Letx € X.
jeT

(i) Hforeachi(1<is<k),, va] (X) (x=X ) s Ofor altx € X, and there exists at least one
jeT
xi € D such that Zij (X) (x-X)<0
jeT

or

(i 1t {; (0} je . are twice differentiable onD andforeach i (1sisk) ZVf,- (X ) (x=x) =0 foral
jeT




f

xe X andthere exists at least one xi € D such that ZV fi (X)(xX)> 0, then X is a solution of
jeT
Max D, fix stxeX.
jeL

Proof:
k
G)Forany xe X and 0€6<1,0<0,S1,m=1,...,k wth 6+ 3 6m=1.
m=1

K
Letx(®) = 0x+ 2, Om x™M. Then
m=1

Y ViR)x(@)-%) = 2, VHR)(O (X + Z Om (x™X) )
jeT jeT

K
=0, Vi) x®X)+ 3 On Y, VIR) xM-X)
jeT m=1 jeT,

=0 Y, Vi) cX)+ 0; 2, VER) (%)
jeT jeT

2 o 3, Vi) @)

m;ei jeT
<0 forei>0

Since z fi (x) is quasiconcave, by Lemma 2.2, we have
jeT

Y tx@)< D, iX) forei>0
jeT jeT

Letting 6 — 1+, we have x (6) — x, by continuity of {fj} j e L, we have Z fix@))—
jeT

Y fi(x), hence
jeT

. z fix)s Z fi(x) foreveryxe X
jeT ie




K K
Then Y= 2 24K s 2 D GiE =2, &) foralxe X.
jeL =1 jeT i=1 jeT jeL

(i) Assume to the contrary that X is not a solution i.e., there exists some x € X such that

Y 0> Y 1®

jeT jeTi

Then there exists at leastone i € {i, ..., K} suchthat 3, fi)> 2, (0
jeT jieT

By quasiconcavity of z fi, we have
jeT

Y i@ +p %) )2 2, §®) foralos p <1
jeTi jeT

By the continuity and quasiconcavity of 2 fi, there exists '€ [0, 1) such that

jeT
Y AEep X)) = 2, H®) for0<p<ps (3.1)
jeT jeT
Y ®+n %)) > 2, G(®) for ps < p<t (3.2)
jeT jeT

Since Y V1(p(xi-X)> 0 with (3.1) and (3.2), there exist two sequence {pn} with pq - u* and
jeT

Mn— 1, and {vn} with vq >0and vy — 0 such that

T ®+ua0F)) = 2 I @& +vn (X)) (3.3)
jeTi jeT

*
First, suppose u* >0, leten-1-%n-,itisclearthat 0h — Otasn —co.
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Since X+ u* (x~X) +8n v (X=X) = (1-8p) (X +pin (x=X) ) +6n (X +vq (x-%)).

By quasiconcavity of Y, fj, (3.3) implies
jeT

2K+ (-X) +60 vo (LX))2 T & +vy (XoX) ) (3.4)
jeT jeT

By (3.1) and (3.4), we have

(S §®+w0%) 480 vn (R~ 5 § & 447 0-%) ) / € v
jeTi jeTi

= (Z fj (X +1" (~X) +8y v (X-X))= T ®) )/On o
jeT jeTi

2 (T @ +vatx) = 3 §®) ) fon v
jeT jeT

=(1/80) (X i@ +wlX) =3 §®))/vn
jeT jeTi

since Y, V1i(X) (x-X) >0 isfinite, we have
jeT

im (18) (X ®+vax %))~ T 4 X)) vn
N —oo T jeTi

- Im (18 Y v (®) (x-X)
N —yoo T

= ¢4 00

11




Im (3 §EH* =R +6vn D)= § & +1* (x=%))/ Brvn
N =0 T feTi

= X VR +px-X) k%)
jeT

This contradicts (3.5).

Now suppose u* = 0. By (3.3) and quasiconcavityof Y f;, we have
jeTi

Z VHE+vn (%)) anx=D) —vn(x%))20
jeT

Y, VH®+va XLX)) (x=X) /nz 3 V i ® +vn (x=%)) (x LX)
jeTi jeTi

Since & V1 X) (x-X) =0 and
jeTi _

im (X W&+ v (XX))0eX) ) /vn
N —oo JeTi

im (v} K+ v X) )0eX) - T Ve @)x-R) ) /vn
= N —=)co le ) -E-rl

- T %) VR) %)
T

< 00

12

(3.6)




we have
im [n (Y VX +va(xX))) /vl (&X) =0
N —co ]GTi
But
im YV (K+vn (X)) (dX)= F Vi () (¢X)>0
N DT JeTi
This contradicts (3.6) Q.E.D.

Corollary 1: Let S be a convex set in EN. Let {f; (x} je L be differentiable functions, g (x)
be an m-dimensional differentiable EP- quasiconcave function, all defined on an open set which
contains S. Let 3 fiX) be quasi-concave on S and let (%, A) satistys

jelL

Y V(R +A'Vg(®) =0

jel (3.7)
g(X)20, XeS (3.8)
_—t -

A g =0120 (3.9)

(i) if there exists some x! € S such that

Y, V(D (x!-9 <0
jel

or
(i)  if there exists some x! € S such that

Y, V(R (x1-R=0
jelL

and {fj} je Lare twice differentiable in S, then X is a solution of Max Y i, st.gx)=0, xe S
jelL

13




Proof: Since g;j is quasiconcave in S for each j (1) < m), it is easy to check that X = {(xe s:
g(x) 20} is convex set. Let Ty and A=(A 1,....A m)t By (3.8) and (3.9), for X ; > O we have

gi (X) =0, hence Vai (X) (x-X) 20 for al xe X by quasiconcavity of gj. Then we have

m _
T VxR =~ 3 1V(® xR
el i=1

<0 foralxeX (3.10)

(): By () of the Theorem 3.1, we know that X is a solution of Max 2, fj(X).

jelL
st.g(x)20,xeS.
@ii). if we exclude case (i), we have
2 Vi®E02 0 graixes (3.11)
jelL
In view of the condition (ji), we can write
Y Vii®x-X)> 0 forsome x'es (3.12)

jel
Combining (3.11) and (3.10), we have
Y Vi®(x-x)= 0 foralxe X
jel

By (ii) of Theorem 3.1, we know that X is a solutionofMax 2. fj(x) o, 9(x)20, xe§.
jel

Q.E.D.

14
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Assumption (A): For any xe X (K),y € X(K), let "= min (f (x),f (y)) foreach jeL. Then
A} e =6 COher) + (1=1) ({7} i~ (V) Jot) €W

Theorem 3.2010): Consider (W-K-P). Let W 2 Ef, be acute, {fj ()} jeL be
W-quasiconcave, and g (x) be such that X (K) is a convex set. If Xe X (K) is a nondominated
solution of (W-K-P) associated with W, and Assumption (A) hoids, then there exists nonzerop € -W*

: such that

Y pfi®2 Y pi toralxe X(K).
jel jel

Theorem 3.3 [8] : Lot e X (K). Ifthere existsp € -W* suchthat 2 P02z X pifiix)
jeL jelL
forall xe X(K)

then

(Y pVi®)te ™XK), %
jelL

Lemma 3.1 [8]: Let xe X (K) and g (x) be Fréchet differentiable at X, then
TX(K), X) ©-C*(X), where
CX)={(Vg®)tyye —K withyg (x))=0}.

ByLemma21, T '(X (K), X)>-C(X) . Thus we can make the following definition.

Definition 3.1: A point Xe X (K) is said to be a "regular point" of the constraint set X (K) if
T (XK ,X) cC ().

Theorem 3.4: Consider (W-K-P). Let {fj (x)} jeL be W-quasiconcave and g (x) be such that

X (K) is convex set. fx € X (K) is a nondominated solution of (W-K-P) associated with W and a
regular point of X (K) , then there exist nonzero p € -W* and Y € -K* such that

Y pV(®) +¥Vg®) =0
jelL

Y9 =0

15




Proof: By Theorem 3.2, there exists a honzero pe ~W* such that

Y pi®2 Y pfi(x) foratxe X (K)
jel jelL

By Theorem 3.3, we have

(T pt(®) eT(X(K), %)
jel

Since X is a regular point, we have that

(Y pf(®)' eC(X)
jel

Then there exists Y€ —K* with Ytg (X ) = 0 such that

(Y p§®)t == (Vo®)Yy
jel

that is
Y pVH(X) +yVg(X) =0
jel
Yg®) =0
Q.E.D.

Theorem 3.5: Consider (E‘, —-K-P), Let g be such that X (K) is a convex set,

pe—(E&)’andI-ﬁ pi#20,15is}»D. Let { }jeL be E, (k) — strictly quasiconcave for some k €1,
andxe X (K) be a local soltionof Max 2, P st xeX (K), then X is a Pareto-optimal
solution of (Ef,, -K-P). Jet

Proof: Assume to the contrary that X is not a Pareto-optimal solution ¢  (E¢,-K-P), i.e.,
there exists some X € X (K) such that

jX)2§(® foral jeL

16




then for any 0 < L < 1, we have

& +H §-%) ) 2 &) foral jeL

and
k(X +H (X=X) ) > &)
hence

.Z PiE+uE0)> X PI®  ranocpen.
iel jel

We have a contradiction.

Q.E.D.

Theorem 3.6: Consider (E‘,—K-P). Let g be such that X (K) S is a convex set,
pe-(EL)* and I={ipi#0,1<i<(} # D. Let {fi}jc | be Ef, (k) - strictly quasiconcave for some

keI, and (Ti=i=1,..., 4} beaparttionof L suchthatforeachi, Y, Pifi(x) isquasi-concave. Let
jeT
xe X (K)

() i foreachi (1Si<h), Y, PVH§(X)(x-X%) <0 for
jeT

alxe X (K), and there exists at least one xie S suchthat 2, PV§(X) x-%) <0
jeTi

or

(i)  {fj () }je L are twice ditferentiable on S and for each i (1 Si<Kk),

T pV1(X) (x-X) = 0 foralix € X (K) and there exists at least are x'e § such that
jeTi

Y PVH(X) (x-X) > 0, then X is a Pareto optimal solution of (E‘,~K~P).
jeTi

Proof: The proof follows directly from Theorem 3.1 and Theorem 3.5.
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Theorem 3.7: Consider (E,-ET -P). Letp e—(E,)*and I={i:pj=0, 1si<l|} = &.
Let {f; }je,_ be Ef,(k) - strictly quasiconcave for some k €1, Y. nf bequasiconcave,and g be
jeTi
EP —quasi-concave. Let (X,) satisty

S PV +X ' Vg®=0
jeL

g(X)eE, XeS

Mo(X)=0, 120

(i) If there exists some x'e Ssuchthat X PIVH®) (') <0
jeL

or

(ii) if there exists some x' €S such that

T AVHE (%) 20
jeL

and {fj}j e L is twice differentiable then X is a Pareto-optimal solution of (Ef,—ET -P).

Proof: The proof follows from corollary 1 of Theorem 3.1 and Theorem 3.5.

Theorem 3.8: Consider (Ef,—ET -P). Let pe—(Ef,)* and I={ipj#0,1<i<!} contain at
least two elements. Let {tj }i eL be Ef, (k) —strictly quasiconcave for some k €1, g be such that X (K)
is aconvex set Xe Int X (K). If

2 pVi(X)=0
jeL (3.14)

then X is a Pareto-optimal solution of (E{,~K-P).

18




Proof: Assume to the contrary that X is not a Pareto-optimal solution of (E{, —-K~P), i.e., there
exists somex € X (K),x#X such that

()2 fj (X) foralljelL
and

fio (%) > fio (%) for some jo

Thenforany 0 cji<1,

let X =%+ f (x-X), we have
§ 026® foraljel (3.15)

and
fic ® >fk(X ), Dby strictquasi-concavity

Hence
Vik® &% >0

Using Theorem (3.14), we have

T AV G —p¥ (R ER)
jeL
j#k
<0

Then there exists i€ 1, i # k, such that
Vi) (*-%) <0

we have
£ (X) <1 ().

This contradicts Theorem (3.15) Q.E.D.

19




We close this section with the following theorem which was originally given in [8].

Theorem 3.9: Consider (W-K-P). Let W be acute and closed. If for some p € -Int W*,

xe X (K)is a solutionof Max je Z pifi (x), st. x € X (K), then X is a nondominated solution of
ieL

(W-K-P) associated with W.

4. Construction of Dominance Cones

We now provide two theorems which indicate how dominance cones can be constructed for
the more general problem (W- ET' -P). Letale Ef,,i=1,...,k, allnonzero. The comresponding hatt-

spaces are given by H; = {Z: 2t ai < bj} and the bounding hyperplanes by J; = {Z: Z! ai =bj} .

K K K —c e
LetH={ H;, D= n H; and Cj= n H;, where Hi" denotes the closure of the
=1 i=1 i=1
i#] i#]

complement H; of H;.

Theorem 4.1: Let Vc EX be a closed convex cone. If forsomej, 1<j<k, al € V, then for
everyZ° € Jj NIntC; there existsa Z€H such that

ZeZ° + Int (-V*).

Proof: Assume to the contrary that there is no Ze Hsuchthat z € 2° + Int (-V*).

LetS={s: s € Z2-z+ Int(-V*), forsome Ze HnJ }. Itis straightiorward to show that S is a
convex set with 0 ¢ S. Hence, by the separation theorem, there exists a nonzero p € Efsuch that
pts <0 foralses.

ForanyZe HnJ ,we Int(-V*)andA >0, we have

-Z+AWeES
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so that

Ptzo0< PtZ-APtw.
Hence

Ptzo< Ptz forevery Ze HNJ (4.1)
and

Ptws 0 forevery we Int(-V*) (4.2)
Thus we have that

pe(int(-v*))' = -V, ie,p<0 (4.3)

Now consider the following system:
a'z=0 (4.4)

Pz >0 (4.5)

We claim that (4.4) and (4.5) have at least one solution. To substantiate this, suppose to the

contrary that the system has no solution. That s, for all Z satisfying altz =0, we must have ptz<0.
By Farkas' lemma, there exists some nonzero number p suchthat pL al=p. If >0, wehavep20,

which contradicts (4.3). If L <0, we have al= KB -1p e Vv, which contradicts al € V. Hence, (4.4) and
(4.5) have at least one solution, say Z.

Consider the poit Z° + a Z . We havethat (2° +a Z t d=2'd+a Z al =20'd =bj, for

every a . Thatis 2° +a Z €Jj forevery o .

Since Z° € Int Cj, there exists some & < 0 such that

z°+a2ec,- fora"ae(‘d_,O]_
Hence:

P+aZe Hny foralae @ .0
and

P + aZ)=pl2® + aptZ <pt2o, foral a e @ , 0]
which contradicts (4.1).

Q.E.D.
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Wae illustrate this Theorem in the following example diagrammed in Fig. 4.1 . —V* shown in Fig.
4.1, is the dominance cone. a2 and a3, the respective normais of the segments J2 and Js , are
elemtns of V. Onthe other hand, a' and a4, the normals of the segmentsJy and J4 respec-tively are
notin V. The Pareto-optimal points on J4 and J4 are no longer nondominated points associated with
—V*. For example, see z° in the diagram.. z° is apparently dominated by z! associated with —=V*. Only
the points on Jo and J3 remains nondominated.

Figure 4.1

Next we present the following theorem which was proved in [11] and [19], and can be used to
handle other cases as shown in Figure 4.2

Theorem 4.2 [11, 18] : Let V © Ef be a closed convex cone. If forsomej(1<j<k), al
V, then for every z° € Jj M Int Djthereexistsaz € rk\ H; suchthat z € 2° +Int(-V").
im1

In Figure 4.2 the dominance cone is given by ~V*. a! and a2, the normals to segments J; and
Jo , respectively, are elements of V, whereas a3 and a4 are not, z%is in J3 . Clearly, z° is dominated by
z' associated with —-V*. Furthermore, only the points on J4 and J are nondominated points. The
Pareto-optimal points on J3 and J4 are no longer nondominated points associated with -V*.
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Figure 4.2

Theorem 4.1 and 4.2 thus provide a means for constructing dominance cones that further restrict
the set of Pareto-optimal points in accordance with specified preferences and priorities over outcomes.
(See also the "goal-focusing” ideas and usages of [6), [7] ). For computational practical usages one may
employ hyperplanes to approximate the Pareto-optimal frontier. Objective functions all are linear. The
Pareto-optimal frontier consists of hypermplanes when all the objective functions are linear. The normals of
those hyperplanes corresponding to preferred outcomes are then used to span the cone V and thereby
to obtain the dominance cone W = -V *. This is an evident alternative way to do goal focusing [6], [7].

The sufficient conditions given in Theorem 3.9 can then determine the nondominated solutions
associated with W.

5. An Ilustrative Example

Consider the following vector extremal or multi-objective optimization problem in two variables in
which there are three objective functions

t (%1, X2) = 30x, —.}x?—2x1 X2

== ixt-1x3 41 199
f2 (x1,%) ==1xt—1x¢ +1x +8x0 +1%

fs (0, %) = 66X ~1x¢-6 X Xe

23




and two constraints
G (X1,%) = 15=x1 — X2

G (X1,X2) = 38-3) = 26
The domain of the object and constraint functions is given by the convex set

S={(x,x%) : 0< x1$10,0< x <10},

and the constraint cone K = EE

The problem may be written as

Max (f1 (X1, X2), f2 (X1, X2), 3 (X1, X2) )
WE3-P) {01 (x1,x)20,i=1,2

{x1,X2) € S

We first consider the special case where W = E§ . The respective Hessian matrices for the
three objective functions are given by

-1 -

| 2 2 0 -6
Vot - o b Vo= V=

0
2 |
-6 -1
7 2

-1
4
0

Since V2f2 is a negative definite matrix, f2 is strictly concave and, hence, strictly quasi concave.

V2f1 and szs are neither positive semi-definite nor negative semi-definite, so fy and f3 are neither
convex nor concave functions. However, f1 and f3 are quasi concave on S. Their level sets on S

S ={(x1,x€ S8t (x1,x2) 2 a}

= {(X1,X2) € S: x2 € 15-1 x,— Q&
{(x1,x2) 2 8 12x1}

sa(f3) = {(x1 ,X2) € S:f3 (x1,X2) 2a}
= {(x1,x) € S: x1$11-;7x2—§?2-l

areconvexforall a >0.
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Since f1 and f3 are nonnegative on §, the level sets Sa (f{) and Sa (f3) are also convex
foralia<0.

Furthermore, f1 and 3 are strictly quasiconcave. To see this, consider the indifference sets for
f1andfs.

I = {(x1.x)€ St (x1,x2) = a}

= {(x1,X2) € S: 30%; -1-x%-2x,x2=a}

I®) ={(x1,x2) € S:f3 (x1.x2) =0}

={(X1,X2)E SIGGXZ-;‘-X%—&(«‘xz: u}

Since neither indifference set contains any straight line segments for any « , fi @nd f3 are strictly
quasi concave. [13]

By Theorem 3.8, the set of Pareto-optimal solutions constitutes the intersection of the
constraint set with the set D = {(x1, x2): A1V f1 (x1,x2) + A2 V2 (x1,x2) + A2 Vi3 (x1,x2) =0,

A1,A2,A3 >0 with at least two Aj nonzero}. But D is the region bounded by three distinct "contract

curves®, one curve for each of the three possible pairs of objective functions:

[ ={(x1,x2): MV i (x1,x2) + A2 VHa(x1,x2) =0, A2 >0}

Dy ={(x1,x2): mV i (x1,x2) + m2 V3(xs,x2) =0, my,m2, >0,}

Fi= {(x1,x2): mV 2 (x1,x2) + m2 V3(x1,x2) =0, py 2 >0,).

Eliminating A1 A2 M1, M2, M, K2, we obtain

Ti= {(x1,%2):88 ~7¢ 4+2x1%2 + 8x1~144x2+360 = 0}
25




= {(X1,xg):4x§ +12¢ 4 xjx2 —588 xp—852x1 + 7920 = o}

T3={(x1.x2):96 X3 =84x] —7xy xp-274 xp+1092x1 — 1848 = O}.

Hence, the set of Pareto-optimal solutions is given by the intersection of the constraint set with the

set bounded by the three contract curves I'y, I'z, and '3 as shown by the shaded region in
Figure 5.1.

-1 “t




Next illustrate our approach water procedure for constructing dominance cones, we restrict
attention to two objective functions, {1 and f3 , in order that the Pareto-optimal frontier may be

displayed in two dimensions. We shall employ the following variant of our preceding example.

f1 (x4,x2) = 30x1— i—x? -2x1X%2

f3 (x4, x2) = 66x2— 1‘*3-6X1 x2

g1(x1,x2) = 15-x1-x2

g2(x1, x2) = 38-3x1—-2x2

Sa{(x1,%2)':05%1<10,0<x2<10 }

X (e3) ={(x1.x2)'e S :91(x1,x2) 20,02 (x1,x2) 20}.
and '

Max (f1 (x1, X2), fa (X1, X2) )

(W-P){ o, xate X (E2)

Figure 5.2 depicts the set of Pareto-optimal solutions of (W-E+2——P) given by the curve

- u{(x1,x2)!: x2=10, 05 x13.03} U{(x1,x2)t: xy=10, 0sx251.05}) U X (e2)

Figure 5.2
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Consider a sequence of solutions in I',say (A,B,C,D,E,F,G,H,Q,U,V,W, 2} = {(0, 10),
(2,10), (3.25,9.66), (4.25,8.2), (4.5, 7.84), (5.5, 6.48), (6,5.8), (7,4.52), (7.5, 3.9), (8.25, 3.01),
(8.25, 3.01), (8.75, 2.43), (9.25, 1.87), (10, 0)}.

' The corresponding sequence of Pareto-optimal points in objective space is given by {A', B,
C.D,E\F,GH,Q, U, V', W,Z} = {(0,635), (19,515), (32.04, 426.05), (53.32, 315.15), (59.37,
290.41), (86.36, 202.8), (101.42, 165.54), (134.48, 103.36), (152.39, 78.16), (180.85, 47.37),
(200.84, 31.32), (221.6, 18.72), (275, 0)}, as shown in Figure 5.3 where the shaded region is the

range of (f1, f3) under the domain X (E2) .

Figure 5.3
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The Pareto-optimal frontier in Figure 5.3 is approximated by six line segments J1, . . ., Jg given
by

Jy ={(f1,fa)t: 5811 +13 =635, 0<f1<59.37}
Jo={(f1,13): 29711 +13 = 467, 59.37 < f1 <101.42}
Ja={(f1,12): 1.9 f1 +13 =356, 101.42 <f; <134.48)
Ja ={(f1.fa): 1.2 11 +13 =265.7, 134.48 <1y < 180.85}

Js={(f1,13)%:0.7 f{ +f3 =175, 180.85 <f1 < 221.5)

Jo={(f1,13):04 {1 +13 =964,  221.6 <f1 <275}

Now suppose that the decision maker's preferences or priorties are for outcomes within the
vicinity of G' € J, M J3. To ensure such outco/mes. a cone V can be constructed such that the normals to
Jz and J3 liein V, but the normals of Jj, J4, Js, and Jg are excluded from V . For example,

V ={A(1.5,1) +p(4, 1): 120, p >0} will fulfill this requirement.

Now let W = -V*. By Theorem 4.1, none of the points in J; U Jg U JsU Jg is a nondominated
pqint associated with W, and Jo U Js is the set of all nondominated points associated with W. The
corresponding nondominated solution set is that part of the curve I'of Figure 5.2 extending from E = (4.5,
7.84) to H = (7, 4.52). Notice particularily how much of the Pareto-soptimal curve through A, B, C, ..., Zis
excluded by this dominance (or "goal-focusing”) cone.
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Consider a sequence of solutions in I',say {A,B,C,D,E,F,G,H,Q,U,V,W,Z} = {(0, 10),
(2,10), (3.25,9.66), (4.25,8.2), (4.5,7.84), (5.5, 6.48), (6,5.8), (7,4.52), (7.5,3.9), (8.25, 3.01),
(8.25, 3.01), (8.75, 2.43), (9.25, 1.87), (10, 0)}.

The comresponding sequence of Pareto-optimal points in objective space is givenby (A", B',
C,D\E,F,G,H,Q,U,V,W, Z1 = {(0, 635), (19, 515), (32.04, 426.05), (53.32, 315.15), (569.37.
290.41), (86.36, 202.8), (101.42, 165.54), (134.48, 103.36), (152.39, 78.16), (180.85, 47.37),
(200.84, 31.32), (221.6, 18.72), (275, 0)}, as shown in Figure 5.3 where the shaded region is the

—.canga of (11, fa) under the domain X (E2) .

Figure 5.3
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The Pareto-optimal frontier in Figure 5.3 is approximated by six line segments J1, . . ., Jg given
by

J1={(f1. 13" 581 + fg =635, 0<fy<59.37)
Jo={(f1,13):29711 +13 = ;167. 59.37 <11 £101.42}
Ja={(f1,fa)t: 1.9 f1 +13 =356, 101.42 < f1 <134.48}
Ja ={ (1.1t 1.2 11 +13 ;265.7, 134.48 <11 < 180.85)
Js={(f1,13)t:0.7 1y +13 =175, 180.85 <11 < 221.5}

Jo={{f1,12):04 f; +13 =964, 2216 <f;$275}

Now suppose that the decision maker's preferences or priorties are for outcomes within the
vicinity of G' € J M J3. To ensure such outcomes, a cone V can be constructed such that the normals to
J and J3 lie in V , but the normals of Ji, J4, J5, and Jg are excluded from V . For example,

V = {A(15,1)+p(4,1): 220, 20} will fulfill this requirement.

Now let W =~V*. By Theorem 4.1, none of the points in J; U Jg U Js5U Jg Is a nondominated
point associated with W, and Jo U J3is the set of all nondominated points associated with W. The
corresponding nondominated solution set is that part of the curve I'of Figure 5.2 extending from E = (4.5,
7.84) to H = (7, 4.52). Notice particularily how much of the Pareto-soptimal curve through A, B,C, ..., Zis
excluded by this dominance (or "goal-focusing") cone.

6. Concluding Remarks

The theory of quasiconcave functions, as a generalization of concave functions, has been the focus
of much research effort for applications in economics, where many utility and production functions are
quasi-concave but not concave. See [20] for the most recent accumulation of research results. However,
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neither they nor earlier important results (e.g., [1], [12], [13], [14], and [15] extend in any immediate way to
multi-objective programming where the needs, obligations, and preferences ot different decision
makers are to be addressed. Beginning in the current paper [10], a start was made with new ideas of "T-
nondominated efficiency” and nondominated solutions for multi-payoff n-person games with interacting or
"cross-constrained” strategy sets.

The present paper building on the results in [8], [9], and [10] has developed some basic ideas and
theory for "cone quasiconcave multiobjective programming”, including necessary as well as sufficient
conditions for optimal solutions to such problems.

Thus, with the special method provided for construction of needed dominance cones, this new
instrument can be applied, for example, to secure more apt and improved analysis of conflicting interests
of multiple economic actors (e.g., firms) and synthesis of better policies by their regulating agencies.
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